Венера - вторая после Меркурия по удаленности от Солнца (108млн.км) планета земной группы. Ее орбита имеет форму почти правильного круга (эксцентриситет 0,007). Венера совершает облет Солнца за 224,7 земных суток со скоростью 35 км/сек.
Особенность движения Венеры в космосе: если все планеты (кроме Урана) вращаются вокруг своей оси против часовой стрелки (если смотреть со стороны Северного полюса мира), то Венера вращается в противоположном направлении - по часовой стрелке.
Ось вращения Венеры почти перпендикулярна к орбитальной плоскости (наклон 3 ), поэтому там отсутствуют сезоны года - один день похож на другой, имеет одинаковую продолжительность и одинаковую погоду. Эта погодная однотипность еще больше усиливается специфичностью венерианской атмосферы - ее сильным парниковым эффектом.

Физические характеристики

Среднее расстояние Венеры от Солнца приблизительно 108.2 миллионов км. Ее диаметр, приблизительно 12,100 км, и масса и плотность, соответственно, приблизительно 81 и 90 процентов от соответственных величин Земли. Венера совершает одно обращение вокруг Солнца за 224.7 Земных дней, но в пересчете на дни на Венере, год совершенно другой, потому что две планеты вращаются на их осях совершенно различными способами. Чтобы определить скорость вращения Венеры,направленные  радиолокационные волны с Земли,отражались от обоих концов диска планеты, и наблюдался эффект Доплера. То есть волны, отраженные от одного края диска Венеры, перемещающиеся к Земле уменьшаются немного в длине волны, в то время как отразившиеся с другого края увеличиваются. Таким образом нашли, что Венера совершает один оборот вокруг своей оси каждые 243 дня. Она вращается вокруг оси в обратном направлении по отношению к Земле и большинству других объектов в солнечной системе. Через бинокль можно увидеть такие же фазы на Венере, как и у Луны.

Атмосфераназад

Состав
Существование атмосферы Венеры бело еще обнаружено в 1976 г. М.В.Ломоносовым при наблюдениях прохождения ее по диску Солнца.Исследования отраженного спектра Венеры с помощью телескопов показали, что атмосфера очень отличается от атмосферы Земли. Двуокись углерода составляет 98 процентов атмосферы планеты по сравнению с 0.03 процентами на Земле, где большинство двуокиси углерода находятся в океанах и в камнях типа известняка. Напротив, азот - наиболее распространенный газ в атмосфере Земли, составляет менее 2% атмосферы Венеры. Благородные газы гелий, неон, и аргон также представлены в атмосфере Венеры на уровне нескольких миллионных — в то время, как доля последних двух газов в атмосфере Земли в 2700 и 500 раз соответственно больше. Эти данные указывают на тот факт, что температура на Солнце начала увеличиваться уже после того, как большинство планет в Солнечной системе уже сформировались, если основываться на популярных в наше время теориях.
Главные составляющие облаков Венеры - капельки серной кислоты и твердые частицы серы. При помощи зондов было обнаружено что, ниже облаков атмосфера содержит приблизительно от 0.1 до 0.4 % процентов водяного пара и 60 миллионных частей свободного кислорода. Наличие этих компонентов указывает, что на Венере возможно когда-то была вода, но теперь планета ее потеряла.

Вертикальная структура
В соответствии с температурным профилем (рис.1) атмосфера Венеры делится на две области: тропосферу, простирающуюся от поверхности планеты до приблизительно 100 км, и термосферу (Schubert and Covey, 1981).
Тропосфера. Названа по аналогии с земной тропосферой по температурному вертикальному профилю. В венерианской тропосфере температура с высотой понижается. На поверхности температура равняется + 460 С, она мало меняется днем и ночью. К верхней границе тропосферы температура понижается до 180 К (- 93 С). Состав газов тропосферы в общем сохраняется по всему профилю, т.е. это в основном атмосфера из углекислого газа.
В тропосфере на высотах между 45 -50 и 60- 65 км находится облачный покров , у него очень высокое альбедо : он отражает около 78% приходящей солнечной радиации. Только небольшая часть солнечной энергии проходит через облака и тропосферный воздух и достигает поверхности планеты.
Несмотря на то что прямая солнечная радиация почти не достигает поверхности планеты , температура ее , а также нижних слоев тропосферы очень высока - до 460 С. Причиной является сильно выраженный парниковый эффект атмосферы.
Облачный покров. Несмотря на неоднократное пересечение облачного покрова спускаемыми аппаратами космических станций , взятие проб воздуха на разной высоте и анализ их, четкого представления о составе облаков и их генезисе до сих пор нет. Ясно только одно, что если до космического века они признавались в основной своей массе состоящими из водяного пара, то в настоящее время такая точка зрения признается ошибочной.
По степени поляризации облака состоят скорее всего из капелек серной кислоты с примесью воды (Schubert and Covey, 1981).
М.Я.Маров (1976) облачный покров Венеры определяет как скопление капелек концентрированного ( 75-80%) водного раствора серной кислоты, возможно, с примесью плавиковой и соляной кислот. Серная кислота находится в переходном состоянии из жидкой фазы в твердую. Содержание водяного пара в облачном покрове не более 10 - 10 от общей смеси газов.
По вертикали облачный покров делится на три слоя: верхний, простирающийся между высотами 65 и 78 км (Ксанфомалити, 1976), средний, основной слой плотных облаков - от 50 до 65 км и нижний , находящийся под основным слоем и представляющий собой дымку, аналогичную верхнему слою.
Основной облачный слой , обладающий стабильностью и высокой плотностью, непрозрачен для световых лучей . 78% солнечной радиации отражается его верхней поверхностью, и именно ее полосчатое строение наблюдается в наземных телескопах и на телевизионных снимках. Светлые полосы это - это поверхность густых облаков, а темные - разрывы между ними, через которые в ультрафиолетовых лучах виден неосвещенный нижний слой облачного покрова.
При среднем значении температурного градиента в тропосфере 7,3 /км ( у земной тропосферы он 5,6 /км) температура воздуха понижается с высотой приблизительно +470 С у поверхности планеты до -35 С у верхней поверхности основного облачного слоя (Ксанфомалити, 1976). Это означает ,что в верхней части облачного слоя вода может находиться ( при давлении 0,11 кг/см ) только в твердой фазе - в виде кристаллов льда.
Используя указанное значение температурного градиента, легко получить температуру нижней поверхности основного облачного слоя на высоте 50 км. Она будет + 75 С. Приблизительно на 2 - 3 км ниже того уровня, уже в пределах нижнего разреженного облачного слоя, температура повышается до + 100 С. Это предел нахождения воды в жидкой фазе. Следовательно, ниже 47-48 км вода может находиться в тропосфере только в газообразном состоянии - в виде пара. Таким образом, поверхность Венеры нигде не соприкасается с водой в ее наиболее активной фазе - в жидком состоянии. Круговорот воды на Венере, характеризующийся крайней незначительностью участвующей в нем воды, могущей переходить из одной фазы в другие, ограничивается интервалами высот в тропосфере от 47 до приблизительно 65 км. Атмосферные осадки на Венере в виде дождя , снега, града отсутствуют вследствие очень напряженного температурного поля внешней области планеты. Из сказанного следует, что круговорот воды на Венере не возбуждает обычных для Земли природных процессов - флювиальных, гляциальных и других. Вода в парообразном состоянии обусловливает химическое выветривание горных пород. Однако и этот процесс малоактивен.
Термосфера. Над тропосферой находится разреженная верхняя атмосфера. Днем она нагревается от прямой радиации в ультрафиолетовом диапазоне волн, а потому ее температура с высотой повышается (рис. 1). Таким образом, по вертикальному изменению температуры термосфера Венеры аналогична земной термосфере. Но вместе с тем имеются и различия. На Земле эта сфера существует непрерывно - день и ночь, а на Венере - только днем, ночью она исчезает. Повышенный нагрев воздуха в дневное время заменяется его сильным охлаждением ночью, в связи с чем воздушная среда верхней атмосферы приобретает свойство криосферы (Schubert and Covey, 1981).
В верхней атмосфере преобладание СО сохраняется до высоты 200 км. На высотах 250-300 км его заменяет атмосферный кислород (О) и окись углерода, а выше 500-700 км атмосфера становится чисто водородной, которая постепенно переходит в межпланетную среду.
Температурный минимум в атмосфере приурочен к высотам 100-110 км, т.е. к основанию термосферы. Его значение выражается 160-180 К (от -113 до -93 С). Подъем температуры воздуха выше этого уровня связан с поглощением коротковолновой солнечной радиации (Маров, 1976).

Циркуляция атмосферы
Под влиянием солнечной радиации происходит неравномерных нагрев планетной атмосферы. Тепловой баланс атмосферы в экваториальной зоне бывает положительным, т.е. приход тепла больше излучения его в инфракрасном диапазоне волн в космос. Однако избыток тепла не накапливается в экваториальной зоне, а передается полярным областям, у которых тепловой баланс отрицательный. Происходит некоторое сглаживание температурных различий областей: одной - с положительным тепловым балансом, другой - с отрицательным.
Этот процесс конвективной передачи тепла от экватора к полюсам свойственен и Земле, но вследствие мощного широтного перемещения воздушных масс с востока на запад он оказывается недостаточно выраженным.
В венерианской атмосфере горизонтальные различия температур намного меньше , чем вертикальные. Наибольшие широтные различия , установленные «Пионер-Венус - 1», относятся к верхнему уровню облаков. Разница в температурах по этому уровню (65 км от поверхности) между полюсами и 60-й параллелью составляет 10-20 , а наиболее высокие ее приурочены к экваториальной зоне, как и у других планет.
Наибольшее количество энергии поглощается в интервале высот 70-100 км; температура на этом уровне на полюсе выше, чем в экваториальной зоне.
Впрочем , аналогичное явление характерно и для Земли. В земной атмосфере в пределах стратосферы и мезосферы полярная область теплее, чем экваториальная.
В венерианской тропосфере температурные вариации по широте значительно больше, чем по долготе. По долготе на расстоянии 110 (больше 1/4 окружности) изменение температуры составляет не более 5 . В нижней тропосфере (10-20) км различия еще меньше , она так массивна , что сохраняет высокие температуры даже в течение продолжительного периода очень длинной (117 земных суток) венерианской ночи (Schubert and Covey, 1981). Температура на ночной стороне Венеры лишь на 20 ниже, чем на дневной.
Хотя горизонтальные температурные различия в венерианской тропосфере малы, тем не менее они могут возбуждать силы атмосферной циркуляции. Особенно большое значение имеют широтные градиенты температуры (между дневной и ночной сторонами планеты).
В соответствии с вращением Венеры с востока на запад в том же направлении (с востока на запад) происходит вращение атмосферы. Скорость вращения тропосферы как по вертикали, так и в горизонтальном направлении изменяется. Если на экваторе у поверхности Венеры восточные ветры не превышают скорость 1-2 м/сек, то на уровне верхней поверхности основного облачного слоя , т.е. на высоте 65 км, скорость восточного переноса воздушных масс возрастает до 100 м/сек ( 360 км/час). Вращаясь с высокой скоростью (в экваториальной зоне), облачный покров за четверо земных суток делает оборот вокруг Венеры, совершающей свой оборот вокруг оси за 243 суток , т.е. вращается в 60 раз медленнее, чем верхняя поверхность основного облачного слоя.
На высотах от 40 до 60 км движение воздушных масс с востока на запад происходит со скоростью 60 м/сек. У поверхности планеты ветра практически нет (скорость его 1-2 м/сек), и она окутана плотным горячим сухим воздухом (470 С). Наличие облачного покрова свидетельствует о восходящих потоках воздуха. Вследствие медленного вращения силы Кориолиса на Венере очень малы.

Климат. Погода
Применительно к Венере , конечно, несколько упрощая суть дела, можно сказать, что климат и погода на этой планете одно и то же. Действительно, если под погодой понимать «непрерывно меняющееся состояние атмосферы... или последовательное изменение значений всех метеорологических элементов...» (Хромов, Мамонтова, 1974, с.348) , то на Венере эти условия практически неизменны в течение и суток и года. При почти перпендикулярном положении оси вращения Венеры к орбитальной плоскости ( наклон 3 ) колебания значений метеорологических элементов остаются в течение суток ( их продолжительность 234 земных суток) почти неизменными. Колебания температуры у поверхности не превышают 5-15 С.

Температура и Давление
Венера также отличается от Земли чрезвычайно высоким поверхностным давлением, которое оказывает атмосфера из-за ее толщины. Давление, которое атмосфера оказывает на поверхность Венеры в 88 раз больше, чем давление, оказываемое атмосферой Земли или приблизительно 88 кг/см2.
Толстая атмосфера Венеры, состоящая из двуокиси углерода и водяного пара, вызывает высокие поверхностные температуры, а также высокое давление, из-за явления, известного как парниковый эффект. Эффект работает следующим образом. Солнечный свет проходит через облака и падает на поверхность, которая нагревается, поскольку она имеет свойство поглощать видимый свет. Т.к. поверхность нагревается, она излучает поглощенное тепло в виде инфракрасного излучения, которое имеет большую длину волны чем видимый свет и легко поглощается более низкой атмосферой. Таким образом, как в оранжерее, тепло остается в области, близкой к поверхности. Когда атомы двуокиси углерода излучают инфракрасное излучение, большая доля возвращается к поверхности и поэтому температура Венеры приблизительно на 480 К выше чем поверхность Меркурия, несмотря на факт, что Меркурий находится намного ближе к Солнцу.


Видимость и Уровни Облаков
Советские зонды, которые были посланы, чтобы совершить посадку на Венеру, были оборудованы искусственным освещением, в случае, если толстый щит облаков планеты будет препятствовать прохождению света к поверхности. Однако оказалось, что уровень освещенности там достаточно высокий для того, чтобы получить фотоснимки скалистой поверхности. Это указывало на то, что более низкие слои атмосферы Венеры чисты.
Облачный слой Венеры, скрывающий от нас ее поверхность, расположен на высотах 48-70 км. над поверхностью, по плотности напоминает легкий туман. Но большая протяженность облачного слоя делает его совершенно не прозрачным для земного наблюдателя.По данным спектральных и других анализов, облака состоят из капелек водного раствора серной кислоты. Однако на расстоянии приблизительно от 31 до 48 км от уровня поверхности, атмосфера туманная из-за наличия частиц серной кислоты, которые она содержит. Еще 3 км выше этот плотный уровень атмосферы Венеры, содержал в основном частицы серы. Эта прослойка на высоте от 52 до 58 км сменяется другим видом облаков, состоящим из капелек серной кислоты, жидкости и твердых частиц серы. Третий уровень облаков, от 65 до 70 км выше поверхности, опять содержит капельки серной кислоты. Самый высокий, туманный уровень атмосферы, простирающийся на 10 км выше облаков, вероятно состоит из водяного пара или ледяных кристаллов.Освещенность на поверхности в дневное время подобна земной в серый пасмурный день. Из космоса облака Венеры выглядят как система полос, распологающихся обычно параллельно экватору планеты, однако порой они образуют детали, которые были замечены еще с Земли, что и позволило установить примерно 4-суточный период вращения облачного слоя. Это 4-суточное вращение было подтверждено космическими аппаратами и объясняется налачием на уровне облаков постоянных ветров, дующих в сторону вращения планеты.


Ветры
В близи поверхности Венеры удалось измерить скорость ветров — примерно 13 км/ч. Они относительно слабы, однако они могут перемещать небольшие частицы песка или подобные им. На больших высотах существуют более сильные ветры. На высоте приблизительно 50 км от поверхности, атмосфера Венеры имеет четырехдневный период вращения. Он называется супервращением атмосферы. На высоте 45 км были отмечены перемещения ветров со скоростью 175 км/ч, а также были обнаружены сильные вертикальные движения воздуха. Зонды, проводившие исследования Венеры принесли данные, которые были расшифрованы как свидетельства наличия молний.

Экзогенные процессыназад

 

Отсутствие на Венере воды и крайне малая скорость ветра у поверхности планеты не способствуют развитию ни флювиальных . эоловых процессов. Обнаружение «Венерой-8» подобия коры выветривания на горных породах, богатых радиоактивными элементами, свидетельствует о действии процесса химического выветривания, хотя на поверхности планеты, как отмечалось, нет ни капли жидкой воды. При очень высокой температуре поверхности, близкой к точке плавления цинка и свинца, вероятно, протекают процессы непосредственного взаимодействия горной породы с находящимся в воздухе водяным паром. Вследствие необычайной сухости воздуха нижних слоев атмосферы едва ли процесс химического выветривания может идти активно.
При господстве устойчивых температурных условий на поверхности планеты термическое выветривание также протекает очень вяло. Как показали панорамы поверхности Венеры, выполненные спускаемыми аппаратами «Венера-9-14», местами имеются крутые склоны с каменными осыпями. Следовательно, в определенных условиях рельефа гравитационные процессы могут протекать активно.

Поверхностьназад

 

Ученые предположили, что геологическое строение Венеры и Земли должно быть во многом подобно. Вывод основан на том, что теплота, под действием которой происходит геологическая активность, обычно выделяется при распаде радиоактивных элементов, и таким образом, уровень геологической активности, которая происходит на планете, как полагают, увеличивается. Таким образом подобия в массе, размере, и вероятно в полном составе Венеры и Земли указали бы на соответственное подобие в составе горных пород и в геологическом строении поверхности. Фактически, эволюционный путь, через который прошла Венера, не только способствовал созданию парникового эффекта в атмосфере, но также привел к некоторым принципиальным геологическим различиям между двумя планетами. Одним из этих различий, оказывается, является недостаток тектонических пластин на Венере.



Состав Поверхности
Анализ состава поверхности планеты проводился несколько раз исследовательскими аппаратами, посланными к планете. Таким образом Советский космический зонд "Венера 8" обнаружил состав, подобный камням гранита на Земле, наряду с радиоактивными изотопами урана, тория, и калия. Венера 9 и Венера 10 обнаружили в двух других местах базальтовые горные породы. Базальт - вулканическая горная порода, которая образуется на океанских бассейнах на Земле при извержении вулканов. Венера 13 и Венера 14 также проанализировали электрическую проводимость горных пород Венеры, а так же были проведены операции с целью получения более глубоких слоев грунта планеты. В этих слоях также содержались базальтовые породы.


Особенности Поверхности
.Поверхность Венеры имеет много черт подобных Земным. На большей части планеты доминируют относительно низко находящиеся плоскости, характеризуемые избыточными вулканическими структурами, но имеются также области нагорья больших размеров с горными хребтами, вулканами, и системами трещин. Самая большая область нагорья, названная Земля Афродиты, находится в экваториальной области Венеры. Ее размеры приблизительно равны размерам Африки. Самая высокая точка на планете находится на горе Максвелла. Ее высота приблизительно на 11 км выше среднего уровня поверхности. Можно отметить, что хребет Максвелла - названный по имени физика Джеймса Клерка Максвелла это - единственная черта поверхности Венеры, названная именем мужчины. Все другие черты рельефа на планете - названы именем женщин, в соответствии с правилами номенклатуры, установленными Международным Астрономическим Объединением.
Плотность кратеров столкновения на Венере подобна их плотности на Земле, указывая поверхностный возраст приблизительно 800 миллионов лет и говорит о том, что поверхность могла все еще подвергаться активным геологическим процессам типа землетрясений и прорывающихся вулканов. Многие из кратеров имеют длинные оттоки, простирающиеся из края, вероятно представляя большие объемы очень жидкого материала, выделившегося в течение чрезвычайно энергетически эффективного события. Из-за того, что на Венере существует чрезвычайно плотная атмосфера, которая препятствует столкновению планеты с малыми телами, самый маленький кратер, получившийся в результате столкновения имеет приблизительно 3 км в диаметре.
Длинные дефекты в горах, их расположение и наличие глубоких разломов на поверхности планеты свидетельствуют о том, что на Венере происходил бурный процесс горообразования. Среди наиболее сложных типов местностей, идентифицированного на Венере - поднятые области поверхности, которые характеризуются сложно пересекающимися наборами разломов и горных кряжей. Эти области, называемые "tesserae" от латинского слова "подокна", могут следовать из длинных эпизодов сжатия и растяжения поверхности. Большие круговые объекты на поверхности, больше чем 300 км в диаметре, окружены концентрическими горными кряжами и разломами. Эти особенности, называемые "coronae" от латинского слова "крону", являются горячими пятнами, сформированными над горячим материалом, выходящем из недр планеты, по пути, подобном формированию Гавайских островов на Земле.


Вулканическая Активность и Действие Ветров
Вулканические черты поверхности на Венере —представлены различными формами — от крупных вулканов, подобно вулканам Маура и Лова на Земле до чрезвычайно малых, подобно тем, которые находят на дне моря Земли. Кратеры, напоминающие горизонтальные трещины в пласте были произведены сыпями очень толстой, вязкой лавы. Извилистые каналы были вырезаны на планете легко текучей лавой. Один из них простирается на расстояние больше чем 6000 км и это самый длинный такой канал, известный в солнечной системе.
Произведенные под воздействием ветров, черты рельефа на Венере включают длинные полоски, которые в многих местах простираются позади препятствий типа низко расположенных горных кряжей и малых вулканических экранов на поверхности планеты. Дюны встречаются невдалеке от несколько больших кратеров столкновений, большая часть похожих на песчинки частиц была образованна во время столкновений с небесными телами.


Недостаток Тектоники
Как было отмечено, изображения, которые до сих пор были посланы космическими аппаратами, исследовавшими Венеру, указывают, что, хотя поверхность планеты была очень геологически активна, она, оказывается, испытывает недостаток тектонических пластин. Однако вулканическим действием, бурно происходящем на Венере управляет выработанная там теплота. Процессы, происходящие при границах пластин на Земле также происходят на Венере, типа глубоких асимметричных впадин, типичных для сенклинарных зон и трещин, типичных для распространяющихся центров. Они, однако, не стыкуются в интегрированной системе как на Земле. Причина этого может быть в недостатке воды и более высоких поверхностных температурах Венеры. Непрерывное исследование изображений, которые возвращаются "Магелланом" - предоставляет большее количество данных чем все предыдущие межпланетные миссии США и это даст возможность ученым продолжить сравнение Венеры и Земли и приблизиться к более полному пониманию процессов развития планет.

 

Изучение Венерыназад

Докосмическое время
На заре телескопической астрономии великий Галилей опубликовал анаграмму: «Не оконченное и скрытое прочтено мною».
Расшифровка содержала известие о том, что мать любви (Венера) наблюдается в различных фазах подобно Луне (Цинтии): « Мать любви подражает фигурам Цинтии».
За этим открытием , окончательно утвердившим правоту гелиоцентрической системы Коперника , в изучении Венеры последовали полтора века застоя. Фоном служили многочисленные заявки на псевдооткрытия вроде свидетельства Франческо Фонтаны из Неаполя, который в 1643 г. увидел на Венере горы, поднимавшиеся на несколько десятков километров .* Спор о Гималаях на Венере впоследствии не затухал , и самым курьезным является то, что современные планетологи действительно обнаружили на Венере высокие горные кряжи.
К прохождению Венеры по диску Солнца 1761 г. относится выдающееся открытие, сделанное М.В.Ломоносовым , которое было совершенно точно истолковано его автором как открытие атмосферы Венеры. Отчет М.В.Ломоносова об этом открытии отличается ясностью
Открытие М.В.Ломоносова поставило точку над i: поверхность Венеры в оптическом диапазоне никогда не наблюдается , поскольку она укрыта от глаз непроницаемой завесой облаков.
Предположения о природе поверхности этой планеты вплоть до второй половины нашего века оставались по этой причине более или менее фантастическими. Одна из прежних гипотез рисовала гигантский безбрежный океан, покрывающий всю без исключения поверхность планеты. Согласно другим гипотезам, лик планеты должен был представлять собой выжженную , абсолютно безводную пустыню, а знаменитые облака - минеральную пыль в бурно циркулирующей атмосфере. Сторонники еще одной точки зрения исходили из того, что условия на Венере близки к тем, которые были на Земле в каменноугольный период, - жаркий климат с обилием влаги.
Но в прежние времена ни одна из догадок о природе поверхности этой планеты так и не получила ранга научной теории. Астрономам попросту не хватало наблюдательных фактов. Не удавалось доже достоверно определить период вращения Венеры вокруг оси.
Серьезный прогресс в изучении соседней с Землей планеты наступил лишь с применением радиолокации и началом полетов к Венере автоматических космических аппаратов. Правда о Венере оказалась удивительнее любой фантазии.
 

Космическая эра
Исследования Венеры начинаются с посылки к ней первых космических аппаратов. Вначале перед ними ставилась задача помимо изучения межпланетного пространства проникнуть в атмосферу и дать конкретные данные о ее физических и химических параметрах, а затем и о ее поверхности и грунте. Как и изучение Луны и Марса автоматическими межпланетными станциями, исследование Венеры осуществлялось советскими и американскими учеными.
Советские исследования. За 20-летний срок, с 12 февраля 1961 г. до конца 1983 г., в направлении Венеры было запущено 16 космических станций типа «Венера». Последняя из них («Венера-16») была выведена на орбиту искусственного спутника Венеры 14 октября 1983 г. и с этого времени начала передавать информацию в Центр дальней космической связи СССР.
Первые две советские космические станции («Венера - 1, -2») прошли мимо Венеры. Во время полета они передавали на Землю информацию о космическом пространстве.
«Венера-3» стартовала 16 ноября 1965 г., а 1 марта 1966 г. достигла Венеры. Это был первый в истории человечества межпланетный перелет.
Следующим был полет «Венеры-4». Она была запущена 12 июля 1967 г., а 18 октября того же года достигла окрестностей Венеры и отделила спускаемый аппарат , который в течение полутора часов передавал на Землю уникальные данные о параметрах атмосферы. На высоте 23 км над поверхностью планеты, где температура была 325 С, а давление 17,6 кг/см2, спускаемый аппарат разрушился.
5 января 1969 г. стартовала «Венера-5», а 10 января - «Венера -6». 16 и 17 мая того же года они вошли в атмосферу Венеры и провели исследование ее глубоких слоев. Были уточнены данные о параметрах атмосферы, полученные станцией «Венера-4». В химическом составе венерианской атмосферы оказалось 97% углекислого газа. Хотя спускаемые аппараты станции «Венера-5» и «Венера-6» имели более прочную конструкцию , все же они не выдержали огромного давления и разрушились на высоте 20 км над поверхностью.
Лишь спускаемому аппарату следующей советской космической станции «Венера-7» , имевшему усовершенствованную конструкцию, удалось впервые в истории космонавтики пересечь всю толщу венерианской атмосферы и достичь поверхности . Станция была запущена 17 августа 1970 г., а спускаемый отсек 15 декабря совершил посадку. В течение всего времени спуска отсек передавал информацию о параметрах атмосферы и в течение 23 минут - с поверхности планеты. В месте посадки температура оказалась около 500 С, а давление порядка 100 атмосфер.
Автоматическая станция «Венера-8» была запущена 27 марта 1972 г. с промежуточной околоземной орбиты. Через 117 суток полета , 22 июля 1972 г., станция достигла окрестностей Венеры и отделила от себя спускаемый аппарат. В месте его посадки на поверхность планеты зафиксировано давление в 90 раз выше , чем на Земле, а температура 470 С.
«Венера-9» и «Венера-10» запущены соответственно 8 и 14 июня 1975 г., а 22 и 25 октября того же года их спускаемые аппараты достигли поверхности планеты и впервые в истории космонавтики передали на Землю ее изображение. Сами же станции стали первыми искусственными спутниками Венеры.
9 и 14 сентября 1978 г. соответственно стартовали «Венера-11» и «Венера-12». Спускаемые аппараты станций совершили мягкую посадку, зафиксировав в невысоких слоях атмосферы многократные электрические разряды - предположительно вспышки молний. Отделив спускаемые аппараты, станции продолжали всестороннее исследование космического пространства.
30 октября 1981 г. была запущена автоматическая межпланетная станция «Венера-13». Преодолев за 4 месяца расстояние более 300 млн. Км, станция 1 марта 1982 г. отделила от себя спускаемый аппарат , прошла на расстоянии 36000 км от поверхности Венеры и продолжала полет по гелиоцентрической орбите как искусственная планета вокруг Солнца. Спускаемый аппарат провел цветное фотографирование поверхности и установил базальтовый состав грунта. Температура оказалась равной 457 С, давление 89 атмосфер.
4 ноября 1981 г. произошел запуск «Венеры-14». Она имела такую же программу исследования, что и «Венера-13». ЕЕ спускаемый аппарат регистрировал температуру, давление, состав атмосферы, бра робы грунта; фиксировались электрические разряды в нижней атмосфере. После отделения спускаемого аппарата станция продолжала исследование космического пространства. Спускаемые аппараты станций были снабжены устройствами для бурения грунта и химического анализа его образцов.
В месте посадки спускаемого аппарата станции «Венера-14» температура оказалась 465 С, а давление 94 атмосферы. Передачи на Землю панорамных изображений окружающей местности осуществлялись через цветные светофильтры. В получаемых изображениях преобладали желтовато-оранжевые , зеленоватые цвета любых предметов на поверхности, оранжеватое небо и такого цвета облака над головой. Дело в том, что синяя часть спектра солнечной радиации поглощается в верхней части атмосферы Венеры, поэтому ее поверхность и нижняя часть атмосферы освещаются не белым, как на Земле, а желтым светом. Таковы законы оптики.
Перед «Венерами -15 и -16» поставлены новые задачи: провести радиолокационную съемку Северной полярной области. Для этой цели на космических аппаратах , выведенных на вокругпланетные орбиты , были установлены радиолокационные станции бокового обзора. 16 октября 1983 г. «Венера-15» провела целый сеанс радиозондирования планеты. Получено изображение приполярной области площадью более миллиона квадратных километров, имеющей вид полосы длиной 9 тыс., а шириной 150 км. На изображении различаются ударные кратеры, гряды возвышенностей, крупные разломы, горные хребты, уступы и детали рельефа размером 1 -2 км.
В апреле 1984 г. по московскому телевидению передавалось сообщение о продолжающейся радиолокационной съемке северной полярной области Венеры и детальной обработке информации , поступающей с орбитальных станций «Венера -15» и «Венера-16».
Американские исследования. Американцами были запущены к Венере четыре автоматические станции со спускаемыми аппаратами. Дважды пролетел и делал телевизионную съемку венерианской поверхности «Маринер-10» . Применяя специальное радарное устройство в сочетании с использованием наземных радиотелескопов, спутник «Пионер-Венера-1» проводил съемку поверхности планеты между шестидесятыми параллелями.
Результаты исследований.
1. Посылкой автоматических аппаратов к Венере удалось раскрыть состав , вертикальную структуру и динамику атмосферы.
2. Методом бурения и другими методами установлен химический состав грунта, тип поверхностных горных пород.
3. Осуществлена радарная съемка поверхности Венеры.
4. Вследствие очень высоких температур и давления жизнь на Венере отсутствует.

 

ТАБЛИЦА. Сравнительные свойства Венеры и Землиназад

 

СВОЙСТВА

ВЕНЕРА

ЗЕМЛЯ

Большие полуоси орбит (АЕ)

0,72

1,00

Период обращения (лет)

0,61

1,00

Диаметр (км)

12104

12756

Масса (Земля = 1)

0,82

1,00

Плотность (г/см3)

5,2

5,5

Плотность до сжатия (г/см3)

4,3

4,5

Ускорение свободного падения

0,91

1,00

Критическая скорость (км/с)

10,4

11

Период обращения вокруг оси (ч)

243

23,9

Площадь поверхности (Земля=1)

0,94

1,00

Коэффициент отражения света

0,7

0,5

Атмосферное давление

90

1,00

Состав атмосферы

CO2 (96%)

N2 (78%)

 

 

 

Hosted by uCoz